
 

 

FORECASTING FUNDAMENTALS 

 

 

Forecast: A prediction, projection, or estimate of some future activity, event, or 

occurrence. 

Types of Forecasts 

- Economic forecasts 

o Predict a variety of economic indicators, like money supply, inflation 

rates, interest rates, etc. 

- Technological forecasts 

o Predict rates of technological progress and innovation. 

- Demand forecasts 

o Predict the future demand for a company’s products or services. 

 

Since virtually all the operations management decisions (in both the strategic 

category and the tactical category) require as input a good estimate of future 

demand, this is the type of forecasting that is emphasized in our textbook and in 

this course.TYPES OF FORECASTING METHODS 

 

 

Qualitative methods: These types of forecasting methods are based on judgments, 

opinions, intuition, emotions, or personal experiences and are subjective in nature. 

They do not rely on any rigorous mathematical computations. 

 

 

Quantitative methods: These types of forecasting methods are based on 

mathematical (quantitative) models, and are objective in nature. They rely heavily 

on mathematical computations. 

 

QUALITATIVE FORECASTING METHODS 

 

 

 

 

 

Executive 

Opinion 
 

Approach in which 

a group of 
managers meet 

and collectively 

develop a forecast 

Market 

Survey 
 

Approach that uses 

interviews and 
surveys to judge 

preferences of 

customer and to 
assess demand 

Delphi 

Method 
 

Approach in which 

consensus 
agreement is 

reached among a 

group of experts 

 

Sales Force 

Composite 
 

Approach in which 

each salesperson 
estimates sales in 

his or her region 

Qualitative Methods 



 

 

QUANTITATIVE FORECASTING METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME SERIES MODELS 
Model Description 

Naïve Uses last period’s actual value as a forecast 

Simple Mean (Average) Uses an average of  all past data as a forecast 

Simple Moving Average 

Uses an average of a specified number of the most 

recent observations, with each observation receiving the 

same emphasis (weight) 

Weighted Moving Average 

Uses an average of a specified number of the most 

recent observations, with each observation receiving a 

different emphasis (weight) 

Exponential Smoothing 
A weighted average procedure with weights declining 

exponentially as data become older 

Trend Projection 
Technique that uses the least squares method to fit a 

straight line to the data 

Seasonal Indexes 
A mechanism for adjusting the forecast to accommodate 

any seasonal patterns inherent in the data 

 

Time-Series Models 
 

Time series models look at past 

patterns of data and attempt to 

predict the future based upon the 

underlying patterns contained 

within those data. 

Associative Models 
 

Associative models (often called 

causal models) assume that the 

variable being forecasted is related 

to other variables in the 

environment. They try to project 

based upon those associations. 

Quantitative Methods 



 

 

DECOMPOSITION OF A TIME SERIES 
Patterns that may be present in a time series 

 
Trend: Data exhibit a steady growth or decline over time. 

 

Seasonality: Data exhibit upward and downward swings in a short to intermediate time frame 

(most notably during a year). 

 

Cycles: Data exhibit upward and downward swings in over a very long time frame. 

 

Random variations: Erratic and unpredictable variation in the data over time with no 

discernable pattern. 

ILLUSTRATION OF TIME SERIES DECOMPOSITION 
Hypothetical Pattern of Historical Demand 
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TREND COMPONENT IN HISTORICAL DEMAND 
Demand 
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SEASONAL COMPONENT IN HISTORICAL DEMAND 
 

 

Demand 
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   CYCLE COMPONENT IN HISTORICAL DEMAND 

 

 

Demand 
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RANDOM COMPONENT IN HISTORICAL DEMAND 
 

 

Demand 
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DATA SET TO DEMONSTRATE FORECASTING METHODS 

 

 
The following data set represents a set of hypothetical demands that have occurred over several 

consecutive years. The data have been collected on a quarterly basis, and these quarterly values 

have been amalgamated into yearly totals. 

 

For various illustrations that follow, we may make slightly different assumptions about starting 

points to get the process started for different models. In most cases we will assume that each year 

a forecast has been made for the subsequent year. Then, after a year has transpired we will have 

observed what the actual demand turned out to be (and we will surely see differences between 

what we had forecasted and what actually occurred, for, after all, the forecasts are merely 

educated guesses). 

 

Finally, to keep the numbers at a manageable size, several zeros have been dropped off the 

numbers (i.e., these numbers represent demands in thousands of units). 

 

 

Year Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total Annual Demand 

1 62 94 113 41 310 

2 73 110 130 52 365 

3 79 118 140 58 395 

4 83 124 146 62 415 

5 89 135 161 65 450 

6 94 139 162 70 465 

 



 

 

ILLUSTRATION OF THE NAÏVE METHOD 

 

 
Naïve method: The forecast for next period (period t+1) will be equal to this period's actual 

demand (At). 

 
 

In this illustration we assume that each year (beginning with year 2) we made a forecast, then 

waited to see what demand unfolded during the year. We then made a forecast for the subsequent 

year, and so on right through to the forecast for year 7. 

 
 

 

Year 

Actual 

Demand 

(At) 

 

Forecast 

(Ft) 

 

 

Notes 

1 310 -- 
There was no prior demand data on 

which to base a forecast for period 1 

2 365 310 
From this point forward, these forecasts 

were made on a year-by-year basis. 

3 395 365  

4 415 395  

5 450 415  

6 465 450  

7  465  

 

MEAN (SIMPLE AVERAGE) METHOD 

 

 
Mean (simple average) method: The forecast for next period (period t+1) will be equal to the 

average of all past historical demands. 

 

 

In this illustration we assume that a simple average method is being used. We will also assume 

that, in the absence of data at startup, we made a guess for the year 1 forecast (300). At the end 

of year 1 we could start using this forecasting method. In this illustration we assume that each 

year (beginning with year 2) we made a forecast, then waited to see what demand unfolded 

during the year. We then made a forecast for the subsequent year, and so on right through to the 

forecast for year 7. 

 



 

 

 

 

Year 

Actual 

Demand 

(At) 

 

Forecast 

(Ft) 

 

 

Notes 

1 310 300 
This forecast was a guess at the 

beginning. 

2 365 310.000 

From this point forward, these forecasts 

were made on a year-by-year basis 

using a simple average approach. 

3 395 337.500  

4 415 356.667  

5 450 371.250  

6 465 387.000  

7  400.000  
 

SIMPLE MOVING AVERAGE METHOD 
Simple moving average method: The forecast for next period (period t+1) will be equal to the 

average of a specified number of the most recent observations, with each observation receiving 

the same emphasis (weight). 

In this illustration we assume that a 2-year simple moving average is being used. We will also 

assume that, in the absence of data at startup, we made a guess for the year 1 forecast (300). 

Then, after year 1 elapsed, we made a forecast for year 2 using a naïve method (310). Beyond 

that point we had sufficient data to let our 2-year simple moving average forecasts unfold 

throughout the years. 

 

 

Year 

Actual 

Demand 

(At) 

 

Forecast 

(Ft) 

 

 

Notes 

1 310 300 
This forecast was a guess at the 

beginning. 

2 365 310 
This forecast was made using a naïve 

approach. 

3 395 337.500 
From this point forward, these forecasts 

were made on a year-by-year basis 

using a 2-yr moving average approach. 
4 415 380.000  

5 450 405.000  

6 465 432.500  

7  457.500  

 



 

 

ANOTHER SIMPLE MOVING AVERAGE ILLUSTRATION 
In this illustration we assume that a 3-year simple moving average is being used. We will also 

assume that, in the absence of data at startup, we made a guess for the year 1 forecast (300). 

Then, after year 1 elapsed, we used a naïve method to make a forecast for year 2 (310) and year 3 

(365). Beyond that point we had sufficient data to let our 3-year simple moving average forecasts 

unfold throughout the years. 

 

 

Year 

Actual 

Demand 

(At) 

 

Forecast 

(Ft) 

 

 

Notes 

1 310 300 
This forecast was a guess at the 

beginning. 

2 365 310 
This forecast was made using a naïve 

approach. 

3 395 365 
This forecast was made using a naïve 

approach. 

4 415 356.667 
From this point forward, these forecasts 

were made on a year-by-year basis 

using a 3-yr moving average approach. 
5 450 391.667  

6 465 420.000  

7  433.333  

WEIGHTED MOVING AVERAGE METHOD 
Weighted moving average method: The forecast for next period (period t+1) will be equal to a 

weighted average of a specified number of the most recent observations. 

In this illustration we assume that a 3-year weighted moving average is being used. We will also 

assume that, in the absence of data at startup, we made a guess for the year 1 forecast (300). 

Then, after year 1 elapsed, we used a naïve method to make a forecast for year 2 (310) and year 3 

(365). Beyond that point we had sufficient data to let our 3-year weighted moving average 

forecasts unfold throughout the years. The weights that were to be used are as follows: Most 

recent year, .5; year prior to that, .3; year prior to that, .2 

 

 

Year 

Actual 

Demand 

(At) 

 

Forecast 

(Ft) 

 

 

Notes 

1 310 300 
This forecast was a guess at the 

beginning. 

2 365 310 
This forecast was made using a naïve 

approach. 

3 395 365 
This forecast was made using a naïve 

approach. 

4 415 369.000 

From this point forward, these forecasts 

were made on a year-by-year basis 

using a 3-yr wtd. moving avg. approach. 

5 450 399.000  

6 465 428.500  

7  450.500  

 



 

 

EXPONENTIAL SMOOTHING METHOD 

 

 
Exponential smoothing method: The new forecast for next period (period t) will be calculated 

as follows: 

 

New forecast = Last period’s forecast + (Last period’s actual demand – Last period’s forecast) 

 

(this box contains all you need to know to apply exponential smoothing) 

Ft =  Ft-1 + (At-1 – Ft-1)  (equation 1)  

 

Ft = At-1 + (1-)Ft-1        (alternate equation 1 – a bit more user friendly) 

 

Where  is a smoothing coefficient whose value is between 0 and 1. 

 

The exponential smoothing method only requires that you dig up two pieces of data to apply it 

(the most recent actual demand and the most recent forecast). 

 

An attractive feature of this method is that forecasts made with this model will include a portion 

of every piece of historical demand. Furthermore, there will be different weights placed on these 

historical demand values, with older data receiving lower weights. At first glance this may not be 

obvious, however, this property is illustrated on the following page. 

DEMONSTRATION: EXPONENTIAL SMOOTHING INCLUDES ALL PAST DATA 

Note: the mathematical manipulations in this box are not something you would ever have to do 

when applying exponential smoothing. All you need to use is equation 1 on the previous page. This 

demonstration is to convince the skeptics that when using equation 1, all historical data will be 

included in the forecast, and the older the data, the lower the weight applied to that data. 

 

To make a forecast for next period, we would use the user friendly alternate equation 1: 

Ft = At-1 + (1-)Ft-1                                                                                                         (equation 1) 

When we made the forecast for the current period (Ft-1), it was made in the following fashion: 

Ft-1 = At-2 + (1-)Ft-2      (equation 2) 

If we substitute equation 2 into equation 1 we get the following: 

Ft = At-1 + (1-)[At-2 + (1-)Ft-2]       

Which can be cleaned up to the following: 

Ft = At-1 + (1-)At-2 + (1-)2Ft-2     (equation 3) 

We could continue to play that game by recognizing that Ft-2 = At-3 + (1-)Ft-3   (equation 4) 

If we substitute equation 4 into equation 3 we get the following: 

Ft = At-1 + (1-)At-2 + (1-)2[At-3 + (1-)Ft-3]     

Which can be cleaned up to the following: 

 Ft = At-1 + (1-)At-2 + (1-)2At-3 + (1-)3Ft-3 

If you keep playing that game, you should recognize that 

Ft = At-1 + (1-)At-2 + (1-)2At-3 + (1-)3At-4 +  (1-)4At-5 +  (1-)5At-6 ………. 

As you raise those decimal weights to higher and higher powers, the values get smaller and smaller. 

 



 

 

EXPONENTIAL SMOOTHING ILLUSTRATION 

In this illustration we assume that, in the absence of data at startup, we made a guess for the year 

1 forecast (300). Then, for each subsequent year (beginning with year 2) we made a forecast 

using the exponential smoothing model. After the forecast was made, we waited to see what 

demand unfolded during the year. We then made a forecast for the subsequent year, and so on 

right through to the forecast for year 7. 

This set of forecasts was made using an  value of .1 

 

 

Year 

Actual 

Demand 

(A) 

 

Forecast 

(F) 

 

 

Notes 

1 310 300 
This was a guess, since there was no 

prior demand data. 

2 365 301 

From this point forward, these forecasts 

were made on a year-by-year basis 

using exponential smoothing with =.1 

3 395 307.4  

4 415 316.16  
5 450 326.044  

6 465 338.4396  

7  351.09564  

A SECOND EXPONENTIAL SMOOTHING ILLUSTRATION 
In this illustration we assume that, in the absence of data at startup, we made a guess for the year 

1 forecast (300). Then, for each subsequent year (beginning with year 2) we made a forecast 

using the exponential smoothing model. After the forecast was made, we waited to see what 

demand unfolded during the year. We then made a forecast for the subsequent year, and so on 

right through to the forecast for year 7. 

This set of forecasts was made using an  value of .2 

 

 

Year 

Actual 

Demand 

(A) 

 

Forecast 

(F) 

 

 

Notes 

1 310 300 
This was a guess, since there was no 

prior demand data. 

2 365 302 
From this point forward, these forecasts 

were made on a year-by-year basis 

using exponential smoothing with =.2 
3 395 314.6  

4 415 330.68  

5 450 347.544  

6 465 368.0352  

7  387.42816  
 



 

 

A THIRD EXPONENTIAL SMOOTHING ILLUSTRATION 

 

 
In this illustration we assume that, in the absence of data at startup, we made a guess for the year 

1 forecast (300). Then, for each subsequent year (beginning with year 2) we made a forecast 

using the exponential smoothing model. After the forecast was made, we waited to see what 

demand unfolded during the year. We then made a forecast for the subsequent year, and so on 

right through to the forecast for year 7. 

 
This set of forecasts was made using an  value of .4 

 

 

Year 

Actual 

Demand 

(A) 

 

Forecast 

(F) 

 

 

Notes 

1 310 300 
This was a guess, since there was no 

prior demand data. 

2 365 304 

From this point forward, these forecasts 

were made on a year-by-year basis 

using exponential smoothing with =.4 

3 395 328.4  

4 415 355.04  

5 450 379.024  

6 465 407.4144  

7  430.44864  

 



 

 

TREND PROJECTION 

 

 
Trend projection method: This method is a version of the linear regression technique. It 

attempts to draw a straight line through the historical data points in a fashion that comes as close 

to the points as possible. (Technically, the approach attempts to reduce the vertical deviations of 

the points from the trend line, and does this by minimizing the squared values of the deviations 

of the points from the line). Ultimately, the statistical formulas compute a slope for the trend line 

(b) and the point where the line crosses the y-axis (a). This results in the straight line equation  

 

Y = a + bX 

 

Where X represents the values on the horizontal axis (time), and Y represents the values on the 

vertical axis (demand). 

 

 

For the demonstration data, computations for b and a reveal the following (NOTE: I will not 

require you to make the statistical calculations for b and a; these would be given to you. 

However, you do need to know what to do with these values when given to you.) 

 

b = 30 

 

a = 295 

 

Y = 295 + 30X  

 

This equation can be used to forecast for any year into the future. For example: 

 

Year 7:  Forecast = 295 + 30(7) = 505 

 

Year 8:  Forecast = 295 + 30(8) = 535 

 

Year 9:  Forecast = 295 + 30(9) = 565 

 

Year 10: Forecast = 295 + 30(10) = 595 



 

 

STABILITY VS. RESPONSIVENESS IN FORECASTING 
 

 

All demand forecasting methods vary in the degree to which they emphasize recent demand 

changes when making a forecast. Forecasting methods that react very strongly (or quickly) to 

demand changes are said to be responsive. Forecasting methods that do not react quickly to 

demand changes are said to be stable. One of the critical issues in selecting the appropriate 

forecasting method hinges on the question of stability versus responsiveness. How much 

stability or how much responsiveness one should employ is a function of how the historical 

demand has been fluctuating. If demand has been showing a steady pattern of increase (or 

decrease), then more responsiveness is desirable, for we would like to react quickly to those 

demand increases (or decreases) when we make our next forecast. On the other hand, if demand 

has been fluctuating upward and downward, then more stability is desirable, for we do not want 

to “over react” to those up and down fluctuations in demand. 

 

For some of the simple forecasting methods we have examined, the following can be noted: 

 

Moving Average Approach: Using more periods in your moving average forecasts will result in 

more stability in the forecasts. Using fewer periods in your moving average forecasts will result 

in more responsiveness in the forecasts. 

 

Weighted Moving Average Approach: Using more periods in your weighted moving average 

forecasts will result in more stability in the forecasts. Using fewer periods in your weighted 

moving average forecasts will result in more responsiveness in the forecasts. Furthermore, 

placing lower weights on the more recent demand will result in more stability in the forecasts. 

Placing higher weights on the more recent demand will result in more responsiveness in the 

forecasts. 

 

Simple Exponential Smoothing Approach: Using a lower alpha (α) value will result in more 

stability in the forecasts. Using a higher alpha (α) value will result in more responsiveness in the 

forecasts.  

 

 

 

 



 

 

SEASONALITY ISSUES IN FORECASTING 

 
Up to this point we have seen several ways to make a forecast for an upcoming year. In many 

instances managers may want more detail that just a yearly forecast. They may like to have a 

projection for individual time periods within that year (e.g., weeks, months, or quarters). Let’s 

assume that our forecasted demand for an upcoming year is 480, but management would like a 

forecast for each of the quarters of the year. A simple approach might be to simply divide the 

total annual forecast of 480 by 4, yielding 120. We could then project that the demand for each 

quarter of the year will be 120. But of course, such forecasts could be expected to be quite 

inaccurate, for an examination of our original table of historical data reveals that demand is not 

uniform across each quarter of the year. There seem to be distinct peaks and valleys (i.e., 

quarters of higher demand and quarters of lower demand). The graph below of the historical 

quarterly demand clearly shows those peaks and valleys during the course of each year. 

 

 

 
 

Mechanisms for dealing with seasonality are illustrated over the next several pages. 
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CALCULATING SEASONAL INDEX VALUES 
 

This is the way you will find seasonal index values calculated in the textbook. Begin by 

calculating the average demand in each of the four quarters of the year. 

 

 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 

Year Q1 Q2 Q3 Q4 
Annual 

Demand 

1 62 94 113 41 310 

2 73 110 130 52 365 

3 79 118 140 58 395 

4 83 124 146 62 415 

5 89 135 161 65 450 

6 94 139 162 70 465 

Avg. 

Demand 

Per Qtr. 

(62+73+ 

79+83+ 

89+94)  

÷ 6 = 80 

(94+110+ 

118+124+ 

135+139) 

÷ 6 = 120 

(113+130+ 

140+146+ 

161+162) 

÷ 6 = 142 

(41+52+ 

58+62+ 

65+70)  

÷ 6 = 58 

 

  

 

Next, note that the total demand over these six years of history was 2400 (i.e., 310 + 365 + 395 + 

415 + 450 + 465), and if this total demand of 2400 had been evenly spread over each of the 24 

quarters in this six year period, the average quarterly demand would have been 100 units.  

Another way to look at this is the average of the quarterly averages is 100 units, i.e. 

(80 + 120 + 142 + 58)/4 = 100 units. 

 

But, the numbers above indicate that the demand wasn’t evenly distributed over each quarter. In 

Quarter 1 the average demand was considerably below 100 (it averaged 80 in Quarter 1). In 

Quarters 2 and 3 the average demand was considerably above 100 (with averages of 120 and 

142, respectively). Finally, in Quarter 4 the average demand was below 100 (it averaged 58 in 

Quarter 4). We can calculate a seasonal index for each quarter by dividing the average quarterly 

demand by the 100 that would have occurred if all the demand had been evenly distributed 

across the quarters. 

 

This would result in the following alternate seasonal index values: 

 

 

Year Q1 Q2 Q3 Q4 

Seasonal 

Index 

80/100 =  

.80 

120/100 = 

1.20 

142/100 = 

1.42 

58/100 =  

.58 

 

A quick check of these alternate seasonal index values reveals that they average out to 1.0 (as 

they should).  (.80 + 1.20 + 1.42 + .58)/4 = 1.000 

USING SEASONAL INDEX VALUES 

 

 



 

 

The following forecasts were made for the next 4 years using the trend projection line approach 

(the trend projection formula developed was Y = 295 + 30X, where Y is the forecast and X is the 

year number). 

  

Year Forecast 

7 505 

8 535 

9 565 

10 595 

 

If these annual forecasts were evenly distributed over each year, the quarterly forecasts would 

look like the following: 

 

 

Year Q1 Q2 Q3 Q4 
Annual 

Forecast 
Annual/4 

7 126.25 126.25 126.25 126.25 505 126.25 

8 133.75 133.75 133.75 133.75 535 133.75 

9 141.25 141.25 141.25 141.25 565 141.25 

10 148.75 148.75 148.75 148.75 595 148.75 

 

However, seasonality in the past demand suggests that these forecasts should not be evenly 

distributed over each quarter. We must take these even splits and multiply them by the seasonal 

index (S.I.) values to get a more reasonable set of quarterly forecasts. The results of these 

calculations are shown below.  

 

S.I. .80 1.20 1.42 .58  

      

Year Q1 Q2 Q3 Q4 
Annual 

Forecast 

7 101.000 151.500 179.275 73.225 505 

8 107.000 160.500 189.925 77.575 535 

9 113.000 169.500 200.575 81.925 565 

10 119.000 178.500 211.225 86.275 595 

 

If you check these final splits, you will see that the sum of the quarterly forecasts for a particular 

year will equal the total annual forecast for that year (sometimes there might be a slight rounding 

discrepancy). 



 

 

OTHER METHODS FOR MAKING SEASONAL FORECASTS 

 

 
Let's go back and reexamine the historical data we have for this problem. I have put a little 

separation between the columns of each quarter to let you better visualize the fact that we could 

look at any one of those vertical strips of data and treat it as a time series. For example, the Q1 

column displays the progression of quarter 1 demands over the past six years. One could simply 

peel off that strip of data and use it along with any of the forecasting methods we have examined 

to forecast the Q1 demand in year 7. We could do the same thing for each of the other three 

quarterly data strips. 

 
 

Year  Q1  Q2  Q3  Q4 

1  62  94  113  41 

2  73  110  130  52 

3  79  118  140  58 

4  83  124  146  62 

5  89  135  161  65 

6  94  139  162  70 

 

To illustrate, I have used the linear trend line method on the quarter 1 strip of data, which would 

result in the following trend line: 

 

Y = 58.8 + 6.0571X 

 

For year 7, X = 7, so the resulting Q1 forecast for year 7 would be 101.200 

 

We could do the same thing with the Q2, Q3, and Q4 strips of data. For each strip we would 

compute the trend line equation and use it to project that quarter’s year 7 demand. Those results 

are summarized here: 

 

Q2 trend line: Y = 89.4 + 8.7429X; Year 7 Q2 forecast would be 150.600 

Q3 trend line: Y = 107.6 + 9.8286X; Year 7 Q3 forecast would be 176.400 

Q4 trend line: Y = 39.2 + 5.3714X; Year 7 Q4 forecast would be 76.800 

 

Total forecast for year 7 = 101.200 + 150.600 + 176.400 + 76.800 = 505.000 

 

These quarterly forecasts are in the same ballpark as those made with the seasonal index values 

earlier. They differ a bit, but we cannot say one is correct and one is incorrect. They are just 

slightly different predictions of what is going to happen in the future. They do provide a total 

annual forecast that is equal to the trend projection forecast made for year 7. (Don’t expect this to 

occur on every occasion, but since it corroborates results obtained with a different method, it 

does give us confidence in the forecasts we have made.) 



 

 

ASSOCIATIVE FORECASTING METHOD 

 

 
Associative forecasting models (causal models) assume that the variable being forecasted (the dependent 
variable) is related to other variables (independent variables) in the environment. This approach tries to 

project demand based upon those associations. In its simplest form, linear regression is used to fit a line to 

the data. That line is then used to forecast the dependent variable for some selected value of the 
independent variable. 

 

In this illustration a distributor of drywall in a local community has historical demand data for the past 

eight years as well as data on the number of permits that have been issued for new home construction. 
These data are displayed in the following table: 

 

 
Year 

# of new home 
construction permits 

Demand for 4’x8’ 
sheets of drywall 

2004 400 60,000 

2005 320 46,000 

2006 290 45,000 

2007 360 54,000 

2008 380 60,000 

2009 320 48,000 

2010 430 65,000 

2011 420 62,000 

  
If we attempted to perform a time series analysis on demand, the results would not make much sense, for 

a quick plot of demand vs. time suggests that there is no apparent pattern relationship here, as seen below. 

 
   

         
 

 
 

ASSOCIATIVE FORECASTING METHOD (CONTINUED) 
 

If you plot the relationship between demand and the number of construction permits, a pattern emerges 

that makes more sense. It seems to indicate that demand for this product is lower when fewer construction 
permits are issued, and higher when more permits are issued. Therefore, regression will be used to 
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establish a relationship between the dependent variable (demand) and the independent variable 

(construction permits). 

     

 

 
 

 

 

The independent variable (X) is the number of construction permits. The dependent variable (Y) 

is the demand for drywall. 

 

Application of regression formulas yields the following forecasting model: 

 

Y = 250 + 150X 

 

If the company plans finds from public records that 350 construction permits have been issued 

for the year 2012, then a reasonable estimate of drywall demand for 2012 would be: 

 

Y = 250 + 150(350) = 250 + 52,500 = 52,750   

 

(which means next year’s forecasted demand is 52,750 sheets of drywall) 
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MEASURING FORECAST ACCURACY 

 

 
Mean Forecast Error (MFE): Forecast error is a measure of how accurate our forecast was in a 

given time period. It is calculated as the actual demand minus the forecast, or 

 

Et = At - Ft 

 

Forecast error in one time period does not convey much information, so we need to look at the 

accumulation of errors over time. We can calculate the average value of these forecast errors 

over time (i.e., a Mean Forecast Error, or MFE).Unfortunately, the accumulation of the Et 

values is not always very revealing, for some of them will be positive errors and some will be 

negative. These positive and negative errors cancel one another, and looking at them alone (or 

looking at the MFE over time) might give a false sense of security. To illustrate, consider our 

original data, and the accompanying pair of hypothetical forecasts made with two different 

forecasting methods. 

 

 

 

Year 

Actual 

Demand 

At 

Hypothetical 

Forecasts 

Made With 

Method 1 

Ft 

Forecast 

Error With 

Method 1 

At - Ft 

Hypothetical 

Forecasts 

Made With 

Method 2 

Ft 

Forecast 

Error With 

Method 2 

At - Ft 

1 310 315 -5 370 -60 

2 365 375 -10 455 -90 

3 395 390 5 305 90 

4 415 405 10 535 -120 

5 450 435 15 390 60 

6 465 480 -15 345 120 

Accumulated Forecast Errors 0  0 

Mean Forecast Error, MFE 0/6 = 0  0/6 = 0 

      

      

Based on the accumulated forecast errors over time, the two methods look equally good. But, 

most observers would judge that Method 1 is generating better forecasts than Method 2 (i.e., 

smaller misses). 

 

 

 



 

 

MEASURING FORECAST ACCURACY 

 

 
Mean Absolute Deviation (MAD): To eliminate the problem of positive errors canceling 

negative errors, a simple measure is one that looks at the absolute value of the error (size of the 

deviation, regardless of sign). When we disregard the sign and only consider the size of the error, 

we refer to this deviation as the absolute deviation. If we accumulate these absolute deviations 

over time and find the average value of these absolute deviations, we refer to this measure as the 

mean absolute deviation (MAD). For our hypothetical two forecasting methods, the absolute 

deviations can be calculated for each year and an average can be obtained for these yearly 

absolute deviations, as follows: 

 

 

 

 

Year 

Actual 

Demand 

At 

Hypothetical Forecasting Method 1 Hypothetical Forecasting Method 2 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Absolute 

Deviation 

|At - Ft| 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Absolute 

Deviation 

|At - Ft| 

1 310 315 -5 5 370 -60 60 

2 365 375 -10 10 455 -90 90 

3 395 390 5 5 305 90 90 

4 415 405 10 10 535 -120 120 

5 450 435 15 15 390 60 60 

6 465 480 -15 15 345 120 120 

 Total Absolute Deviation 60   540 

 Mean Absolute Deviation 60/6=10   540/6=90 

 

 

The smaller misses of Method 1 has been formalized with the calculation of the MAD. Method 1 

seems to have provided more accurate forecasts over this six year horizon, as evidenced by its 

considerably smaller MAD. 



 

 

MEASURING FORECAST ACCURACY 

 

 
Mean Squared Error (MSE): Another way to eliminate the problem of positive errors 

canceling negative errors is to square the forecast error. Regardless of whether the forecast error 

has a positive or negative sign, the squared error will always have a positive sign. If we 

accumulate these squared errors over time and find the average value of these squared errors, we 

refer to this measure as the mean squared error (MSE). For our hypothetical two forecasting 

methods, the squared errors can be calculated for each year and an average can be obtained for 

these yearly squared errors, as follows: 

 

 

 

 

Year 

Actual 

Demand 

At 

Hypothetical Forecasting Method 1 Hypothetical Forecasting Method 2 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Squared 

Error 

(At - Ft)
2 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Squared 

Error 

(At - Ft)
2 

1 310 315 -5   25   370 -60   3600 

2 365 375 -10 100 455 -90   8100 

3 395 390 5   25 305 90   8100 

4 415 405 10 100 535 -120 14400 

5 450 435 15 225 390 60   3600 

6 465 480 -15 225 345 120 14400 

 Total Squared Error 700   52200 

 Mean Squared Error 
700/6 = 

116.67 
  

52200/6 = 

8700 

 

 

Method 1 seems to have provided more accurate forecasts over this six year horizon, as 

evidenced by its considerably smaller MSE. 

 

The Question often arises as to why one would use the more cumbersome MSE when the MAD 

calculations are a bit simpler (you don’t have to square the deviations). MAD does have the 

advantage of simpler calculations. However, there is a benefit to the MSE method. Since this 

method squares the error term, large errors tend to be magnified. Consequently, MSE places a 

higher penalty on large errors. This can be useful in situations where small forecast errors don’t 

cause much of a problem, but large errors can be devastating. 

 

 

 

 

 



 

 

MEASURING FORECAST ACCURACY 

 

 
Mean Absolute Percent Error (MAPE): A problem with both the MAD and MSE is that their 

values depend on the magnitude of the item being forecast. If the forecast item is measured in 

thousands or millions, the MAD and MSE values can be very large. To avoid this problem, we 

can use the MAPE. MAPE is computed as the average of the absolute difference between the 

forecasted and actual values, expressed as a percentage of the actual values. In essence, we look 

at how large the miss was relative to the size of the actual value. For our hypothetical two 

forecasting methods, the absolute percentage error can be calculated for each year and an 

average can be obtained for these yearly values, yielding the MAPE, as follows: 

 

 

 

 

Year 

Actual 

Demand 

At 

Hypothetical Forecasting Method 1 Hypothetical Forecasting Method 2 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Absolute 

% Error 
100|At - Ft|/At 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Absolute 

% Error 
100|At - Ft|/At 

1 310 315 -5 1.16% 370 -60 19.35% 

2 365 375 -10  2.74% 455 -90 24.66% 

3 395 390 5 1.27% 305 90 22.78% 

4 415 405 10 2.41% 535 -120 28.92% 

5 450 435 15 3.33% 390 60 13.33% 

6 465 480 -15 3.23% 345 120 17.14% 

 Total Absolute % Error 14.59%   134.85% 

 Mean Absolute % Error 
14.59/6= 

2.43% 
  

134.85/6= 

22.48% 

 

 

Method 1seems to have provided more accurate forecasts over this six year horizon, as 

evidenced by the fact that the percentages by which the forecasts miss the actual demand are 

smaller with Method 1 (i.e., smaller MAPE). 



 

 

ILLUSTRATION OF THE FOUR FORECAST ACCURACY MEASURES 
 

 

Here is a further illustration of the four measures of forecast accuracy, this time using 

hypothetical forecasts that were generated using some different methods than the previous 

illustrations (called forecasting methods A and B; actually, these forecasts were made up for 

purposes of illustration). These calculations illustrate why we cannot rely on just one measure of 

forecast accuracy. 

 
  

Hypothetical Forecasting Method A Hypothetical Forecasting Method B 

 

 

Year 

Actual 

Demand 

At 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Absolute 

Deviation 

|At - Ft| 

Squared 

Deviation 

(At - Ft)2 

Abs. % 

Error 

|At-Ft|/At 

Forecast 

Ft 

Forecast 

Error 

At - Ft 

Absolute 

Deviation 

|At - Ft| 

Squared 

Deviation 

(At - Ft)2 

Abs. % 

Error 

|At-Ft|/At 

1 310 330 -20 20 400 6.45% 310 0 0 0 0% 

2 365 345 20 20 400 5.48% 365 0 0 0 0% 

3 395 415 -20 20 400 5.06% 395 0 0 0 0% 

4 415 395 20 20 400 4.82% 415 0 0 0 0% 

5 450 430 20 20 400 4.44% 390 60 60 3600 13.33% 

6 465 485 -20 20 400 4.30% 525 -60 60 3600 12.90% 

  Totals 0 120 2400 30.55% Totals 0 120 7200 26.23% 

   

MFE = 

0/6 = 

0 

MAD = 

120/6 = 

20 

MSE = 

2400/6 = 

400 

MAPE= 

30.55/6 

5.09% 

 

MFE = 

0/6 = 

0 

MAD = 

120/6 = 

20 

MSE = 

7200/6 = 

1200 

MAPE= 

26.23/6 

4.37% 

 

You can observe that for each of these forecasting methods, the same MFE resulted and the same 

MAD resulted. With these two measures, we would have no basis for claiming that one of these 

forecasting methods was more accurate than the other. With several measures of accuracy to 

consider, we can look at all the data in an attempt to determine the better forecasting method to 

use. Interpretation of these results will be impacted by the biases of the decision maker and the 

parameters of the decision situation. For example, one observer could look at the forecasts with 

method A and note that they were pretty consistent in that they were always missing by a modest 

amount (in this case, missing by 20 units each year). However, forecasting method B was very 

good in some years, and extremely bad in some years (missing by 60 units in years 5 and 6). 

That observation might cause this individual to prefer the accuracy and consistency of 

forecasting method A. This causal observation is formalized in the calculation of the MSE. 

Forecasting method A has a considerably lower MSE than forecasting method B. The squaring 

magnified those big misses that were observed with forecasting method B. However, another 

individual might view these results and have a preference for method B, for the sizes of the 

misses relative to the sizes of the actual demand are smaller than for method A, as indicated by 

the MAPE calculations. 

  

 


